<p>Field inter-comparison of eleven atmospheric ammonia measurement techniques</p>

Field inter-comparison of eleven atmospheric ammonia measurement techniques

K. von Bobrutzki et al.

Atmos. Meas. Tech. Discuss., 2, 1783-1835, 2009 Atmos. Meas.


Eleven instruments for the measurement of ambient concentrations of atmospheric ammonia gas (NH3), based on eight different measurement methods were inter-compared above an intensively managed agricultural field in late summer 2008 in S. Scotland. To test the instruments over a wide range of concentrations, the field was fertilised with urea midway through the experiment, leading to an increase in the average concentration from 10 to 100 ppbv. The instruments deployed included three wet-chemistry systems, one with offline analysis (annular rotating batch denuder, RBD) and two with online-analysis (Annular Denuder sampling with online Analysis, AMANDA; AiRRmonia), two Quantum Cascade Laser Absorption Spectrometers (a large-cell dual system, DUAL-QCLAS, and a compact system, c-QCLAS), two photo-acoustic spectrometers (WaSul-Flux, Nitrolux-100), a Cavity Ring Down Spectrosmeter (CRDS), a Chemical Ionisation Mass Spectrometer (CIMS), an ion mobility spectrometer (IMS) and an Open-Path Fourier Transform Infra-Red (OP-FTIR) spectroscopy. Each instrument was compared with each other and with the average concentration of all instruments. An overall good agreement of hourly average concentrations between the instruments (R2>0.84), was observed for NH3concentrations at the field of up to 120 ppbv with the slopes against the average ranging from 0.67 (DUAL-QCLAS) to 1.13 (AiRRmonia) with intercepts of –0.74 ppbv (RBD) to +2.69 ppbv (CIMS). More variability was found for performance for lower concentrations (<10 ppbv). Here the overruling factors affecting measurement precision are (a) the inlet design, (b) the state of inlet filters (where applicable), and (c) the quality of gas-phase standards (where applicable). By reference to the fast (1 Hz) instruments deployed during the study, it was possible to characterize the response times of the slower instruments.